Активный фильтр низких частот. Фильтр низких частот — как сделать своими руками. Инструкция и советы для начинающих (100 фото). Изготовление печатной платы

Практический расчет фильтров верхних и нижних частот (RC и LC фильтров)

Доброго дня уважаемые радиолюбители!
Сегодня, на сайте , на очередном занятии , мы с вами рассмотрим порядок расчета фильтров верхних и нижних частот .
Из этой статьи вы узнаете, что фильтровать можно не только “базар”, но и многое другое. А изучив статью, научитесь самостоятельно проводить необходимые расчеты, которые вам помогут при конструировании или наладке различной аппаратуры (в статье много формул, но это не страшно, на самом деле все очень просто).

В первую очередь определимся, что понятия “верхние” и “нижние” частоты относятся к звукотехнике, а понятия “высокие” и “низкие” частоты – относятся к радиотехнике.

Фильтры верхних частот (далее ФВЧ ) и фильтры нижних частот (далее ФНЧ ) применяются во многих электрических схемах и служат для разных целей. Одним из ярких примеров их применения – цветомузыкальные устройства. К примеру, если вы наберете в поисковике “простая цветомузыка”, то заметите, насколько часто в результатах поиска показывается простейшая цветомузыка на одном транзисторе. Естественно, что такую конструкцию очень трудно назвать цветомузыкой. Зная что такое фильтры верхних и нижних частот и как они рассчитываются, вы сами, самостоятельно, можете переделать такую схему в более полноценное цветомузыкальное устройство. Простейший случай: вы берете две таких одинаковых схемы, но перед каждой ставите фильтр. Перед одним транзистором ФНЧ, а перед вторым – ФВЧ и у вас уже получается двухканальная цветомузыка. А если покумекать, то можно взять еще один транзистор и применив два фильтра (ФНЧ и ФВЧ или один средней частоты) получить третий канал – среднечастотный.

Прежде чем продолжить разговор о фильтрах коснемся очень важной их характеристики – амплитудно-частотная характеристика (АЧХ ). Что это за показатель.

АЧХ фильтра показывает как изменяется уровень амплитуду сигнала проходящего через этот фильтр в зависимости от частоты сигнала .
Т.е., на одной частоте входящего на фильтр сигнала уровень амплитуды такой-же как и на выходе, а для другой частоты, фильтр, оказывая сопротивление сигналу, ослабляет амплитуду входящего сигнала.

Тут же появляется еще одно определение: частота среза .

Частота среза это частота, на которой происходит спад амплитуды выходного сигнала до значения равного 0,7 от входного.
Например, если при частоте входного сигнала 1 кГц амплитудой 1 вольт на выходе фильтра амплитуда входного сигнала уменьшается до 0,7 вольта, то частота 1 кГц является частотой среза данного фильтра.

И последнее определение – крутизна частотной характеристики фильтра .

Фильтры высоких и низких частот это обыкновенные электрические цепи, состоящие из одного или нескольких элементов, обладающих нелинейной АЧХ, т.е. имеющих разное сопротивление на разных частотах.

Подытоживая вышесказанное можно сделать вывод, что по отношению к звуковому сигналу фильтры являются обыкновенными сопротивлениями, с тем лишь отличием, что их сопротивление меняется в зависимости от частоты звукового сигнала. Такое сопротивление называется реактивным и обозначается как Х.

Частотные фильтры изготавливают из элементов, обладающих реактивным сопротивлением – конденсаторов и катушек индуктивности . Рассчитать реактивное сопротивление конденсатора можно по нижеприведенной формуле:

Xc=1/2пFС где:
Хс – реактивное сопротивление конденсатора;
п – оно и в Африке “пи”;
F – частота;
С – емкость конденсатора.
То есть, зная емкость конденсатора и частоту сигнала, всегда можно определить какое сопротивление оказывает конденсатор для конкретной частоты.

А реактивное сопротивление катушки индуктивности вот этой формулой:

X L =2пFL где:
X L – реактивное сопротивление катушки индуктивности;
п – оно и в России “пи”;
F – частота сигнала;
L – индуктивность катушки

Частотные фильтры бывают нескольких типов:
одноэлементные ;
Г- образные ;
Т – образные ;
П – образные ;
многозвенные .

В этой статье мы с вами не будем глубоко опускаться в теорию, а рассмотрим только поверхностные вопросы, и только фильтры состоящие из сопротивлений и конденсаторов (фильтры с катушками индуктивности трогать не будем).

Одноэлементный фильтр

- фильтр состоящий из одного элемента : или конденсатора (для выделения верхних частот) , или катушки индуктивности (для выделения нижних частот) .

Г – образный фильтр

Г-образный фильтр – это обыкновенный делитель напряжения с нелинейной АЧХ и его можно представить в виде двух сопротивлений:

С помощью делителя напряжения мы можем понизить входное напряжения до необходимого нам уровня.
Формулы для расчета параметров делителя напряжения:

Uвх=Uвых*(R1+R2)/R2
Uвых=Uвх*R2/(R1+R2)
Rобщ=R1+R2
R1=Uвх*R2/Uвых – R2
R2=Uвых*Rобщ/Uвх

К примеру, нам дано:
Rобщ=10 кОм , Uвх=10 В , на выходе делителя надо получить Uвых=7 В
Порядок расчета:
1. Определяем R2= 7*10000/10= 7000= 7 кОм
2. Определяем R1= 10*7000/7-7000= 3000= 3 кОм, или R1=Rобщ-R2=10-7= 3 кОм
3. Проверяем Uвых=10*7000/(3000+7000)= 7 В
Что нам и требовалось.
Знание этих формул необходимо не только для построения делителя напряжения с нужным выходным напряжением, но и для расчета фильтров нижних и верхних частот, в чем вы убедитесь ниже.

ВАЖНО!
Так как сопротивление нагрузки, подключаемой к выходу делителя, влияет на выходное напряжение, то значение R2 должно быть в 100 раз меньше входного сопротивления нагрузки. Если не нужна высокая точность, то это значение можно снизить до 10 раз.
Это правило также справедливо и при расчетах фильтров.

Чтобы из делителя напряжения на двух резисторах получить фильтр применяют конденсатор .
Как вы уже знаете, конденсатор обладает реактивным сопротивлением . При этом его реактивное сопротивление на высоких частотах минимально, а на низких частотах – максимально.

При замене сопротивления R1 на конденсатор (при этом на высоких частотах ток через него проходит беспрепятственно, а на низких ток через него не проходит) мы получим фильтр верхних частот.
А при замене конденсатором сопротивления R2 (при этом, обладая малым реактивным сопротивлением на высоких частотах, конденсатор шунтирует токи высокой частоты на землю, а на низких частотах его сопротивление велико и ток через него не проходит)- фильтр нижних частот.

Как я уже сказал, уважаемые радиолюбители, мы не будем глубоко нырять в дебри электротехники, иначе мы заблудимся и забудем о чем шла речь. Поэтому сейчас мы абстрагируемся от сложных взаимосвязей мира электротехники и будем рассматривать эту тему как частный случай, не привязанный ни к чему.
Но продолжим. Не так все плохо. Знание хотя бы элементарных вещей очень большое подспорье в радиолюбительской практике. Ну не рассчитаем мы точно фильтр, а рассчитаем с ошибкой. Ну и ничего страшного, в ходе настройки прибора мы подберем и уточним нужные номиналы радиодеталей.

Порядок расчета Г-образного фильтра верхней частоты

В приведенных примерах расчет параметров фильтра начинается с того, что нам известно общее сопротивление делителя напряжения, но наверное правильнее, при практическом расчете фильтров, определять сначала сопротивление резистора R2 делителя, значение которого должно быть в 100 раз меньше сопротивления нагрузки к которой фильтр будет подключен. А также следует не забывать что делитель напряжения тоже потребляет ток, так-что в конце, необходимо будет определить и рассеиваемую мощность на резисторах для их правильного выбора.

Пример : Нам надо рассчитать Г-образный фильтр верхней частоты с частотой среза 2 кГц.

Дано : Rобщ= 5 кОм , частота среза фильтра – 2 кГц .
(можно взять конкретные напряжения, но в нашем случае это никакой роли не играет).
Проводим расчет:

R1 Хс = R1 .
R2 :

R1 :



Xc=1/2пFC=R1 —> C=1/2пFR1:
C=1/2пFR1 = 1/2*3,14*2000*1500 =5,3*10 -8 =0,053 мкФ.
C=1,16/R2пF .
6. Проверяем частоту среза Fср
Fср=1/2пR1C= 1/2*3,14*1500*0,000000053 = 2003 Гц.
Таким образом мы определили, что для построения фильтра высокой частоты с заданными параметрами (Rобщ= 5 кОм, Fср= 2000 Гц) R2= 3,5 кОм и конденсатор емкостью С= 0,053 мкФ.
? Для справки:
? 1 мкФ = 10 -6 Ф = 0,000 001 Ф
? 0,1 мкФ = 10 -7 Ф = 0,000 000 1 Ф
? 0,01 мкФ = 10 -8 Ф = 0,000 000 01 Ф
и так далее…

Порядок расчета Г-образного фильтра нижней частоты

Пример : Нам надо рассчитать Г-образный фильтр нижней частоты с частотой среза 2 кГц.

Дано : общее сопротивление делителя напряжения – Rобщ= 5 кОм , частота среза фильтра – 2 кГц .
Входное напряжение принимаем за 1, а выходное за 0,7 (как и в предыдущем случае).
Проводим расчет:

1. Так как мы подключили конденсатор вместо резистор R2 , то реактивное сопротивление конденсатора Хс = R2 .
2. Определяем по формуле делителя напряжения сопротивление R2 :
R2=Uвых*Rобщ/Uвх =0,7*5000/1 = 3500= 3,5 кОм.
3. Определяем сопротивление резистора R1 :
R1=Rобщ-R2= 5 – 3,5= 1,5 кОм.
4. Проверяем значение выходного напряжения на выходе фильтра при рассчитанных сопротивлениях:
Uвых=Uвх*R2/(R1+R2) =1*3500/(1500+3500) = 0,7.
5. Определяем емкость конденсатора, которую выводим из формулы: Xc=1/2пFC=R2 —> C=1/2пFR2:
C=1/2пFR2 = 1/2*3,14*2000*3500 =2,3*10 -8 =0,023 мкФ.
Емкость конденсатора также можно определить по формуле: C=1/4,66*R2пF .
6. Проверяем частоту среза Fср по формуле, которую также выводим из выше приведенной:
Fср=1/2пR2C= 1/2*3,14*3500*0,000000023 = 1978 Гц.
Таким образом мы определили, что для построения фильтра нижней частоты с заданными параметрами (Rобщ= 5 кОм, Fср= 2000 Гц) необходимо применить сопротивление R1= 1,5 кОм и конденсатор емкостью С= 0,023 мкФ.

Т – образный фильтр

Т- образные фильтры высоких и низких частот , это те же Г- образные фильтры , к которым добавляется ещё один элемент. Таким образом, они рассчитываются так же как делитель напряжения, состоящий из двух элементов с нелинейной АЧХ. А после, к расчётному значению суммируется значение реактивного сопротивления третьего элемента. Другой, менее точный способ расчёта Т-образного фильтра начинается с расчёта Г-образного фильтра, после чего, значение «первого» рассчитанного элемента Г-образного фильтра увеличивается, или уменьшается в два раза – «распределяется» на два элемента Т-образного фильтра. Если это конденсатор, то значение ёмкости конденсаторов в Т-фильтре увеличивается в два раза, а если это резистор или дроссель, то значение сопротивления, или индуктивности катушек уменьшается в два раза:

П – образный фильтр

П-образные фильтры , это те же Г- образные фильтры , к которым добавляется ещё один элемент впереди фильтра. Всё, что было написано для Т-образных фильтров справедливо для П-образных.
Как и в случае с Т-образными фильтрами, для расчёта П-образных используют формулы делителя напряжения, с добавлением дополнительного шунтирующего сопротивления первого элемента фильтра. Другой, менее точный способ расчёта П-образного фильтра начинается с расчёта Г-образного фильтра, после чего, значение «последнего» рассчитанного элемента Г-образного фильтра увеличивается, или уменьшается в два раза – «распределяется» на два элемента П-образного фильтра. В противоположность Т-образному фильтру, если это конденсатор, то значение ёмкости конденсаторов в П-фильтре уменьшается в два раза, а если это резистор или дроссель, то значение сопротивления, или индуктивности катушек увеличивается в два раза.

Как правило, одноэлементные фильтры применяют в акустических системах. Фильтры верхних частот обычно делают Т-образными, а фильтры нижних частот П-образными. Фильтры средних частот, как правило, делают Г-образными, их двух конденсаторов.

Для написания статьи, кроме всего прочего использовались материалы с сайта www.meanders.ru, автором и владельцем которого является Александр Мельник, за что ему большое и бесконечное (меандровское) спасибо.

При работе с электрическими сигналами часто требуется выделить из них какую-либо одну частоту или полосу частот (например, разделить шумовой и полезный сигналы). Для подобного разделения используются электрические фильтры. Активные фильтры, в отличие от пассивных, включают в себя ОУ (или другие активные элементы, например, транзисторы, электронные лампы) и обладают рядом преимуществ. Они обеспечивают более качественное разделение полос пропускания и затухания, в них сравнительно просто можно регулировать неравномерности частотной характеристики в области пропускания и затухания. Также в схемах активных фильтров обычно не используются катушки индуктивности. В схемах активных фильтров частотные характеристики определяются частотнозависимыми обратными связями.

Фильтр нижних частот

Схема фильтра нижних частот приведена на Рис. 12.

Рис. 12. Активный фильтр нижних частот.

Коэффициент передачи такого фильтра можно записать как

, (5)

и
. (6)

При К 0 >>1

Коэффициент передачи
в (5) оказывается таким же, как и у пассивного фильтра второго порядка, содержащего все три элемента (R , L , C ) (Рис. 13), для которого:

Рис. 14. АЧХ и ФЧХ активного фильтра низких частот для разных Q .

Если R 1 = R 3 = R и C 2 = C 4 = С (на Рис. 12), то коэффициент передачи можно записать как

Амплитудно- и фазочастотные характеристики активного фильтра низких частот для разных значений добротности Q показаны на Рис. 14 (параметры электрической схемы подобраны так, чтобы ω 0 = 200 рад/с). Из рисунка видно, что с ростом Q

Активный фильтр низких частот первого порядка реализуется схемой Рис. 15.

Рис. 15. Активный фильтр низких частот первого порядка.

Коэффициент передачи фильтра равен

.

Пассивный аналог этого фильтра представлен на Рис. 16.

Сравнивая эти коэффициенты передачи, видим, что при одинаковых постоянных времени τ’ 2 и τ модуль коэффициента передачи активного фильтра первого порядка будет в К 0 раз больше, чем у пассивного.

Рис. 17. Simulink -модель активного фильтра низких частот.

Исследовать АЧХ и ФЧХ рассматриваемого активного фильтра можно, например, в Simulink , используя блок передаточной функции. Для параметров электрической схемы К р = 1, ω 0 = 200 рад/с и Q = 10 Simulink -модель с блоком передаточной функции будет выглядеть, как показано на Рис. 17. АЧХ и ФЧХ можно получить с помощью LTI - viewer . Но в данном случае проще использовать команду MATLAB freqs . Ниже приведен листинг для получения графиковАЧХ и ФЧХ.

w0=2e2; %собственная частота

Q=10; %добротность

w=0:1:400; %диапазон частот

b=; %вектор числителя передаточной функции:

a=; %вектор знаменателя передаточной функции:

freqs(b,a,w); %расчет и построение АЧХ и ФЧХ

Амплитудно-частотные характеристики активного фильтра низких частот (для τ = 1с и К 0 = 1000) показаны на Рис.18. Из рисунка видно, что с ростом Q проявляется резонансный характер амплитудно-частотной характеристики.

Построим модель фильтра нижних частот в SimPowerSystems , используя созданный нами блок ОУ (operational amplifier ), как показано на Рис 19. Блок операционного усилителя является нелинейным, поэтому в настройках Simulation / Configuration Parameters Simulink для увеличения скорости расчета нужно использовать методы ode23tb или ode15s . Также необходимо разумно выбрать шаг по времени.

Рис. 18. АЧХ и ФЧХ активного фильтра низких частот (для τ = 1с).

Пусть R 1 = R 3 = R 6 = 100 Ом, R 5 = 190 Ом, C 2 = C 4 = 5*10 -5 Ф. Для случая, когда частота источника совпадает с собственной частотой системы ω 0 , сигнал на выходе фильтра достигает максимальной амплитуды (приведен на Рис. 20). Сигнал представляет собой установившиеся вынужденные колебания с частотой источника. На графике хорошо виден переходный процесс, вызванный включением схемы в момент времени t = 0. Также на графике видны отклонения сигнала от синусоидальной формы вблизи экстремумов. На Рис. 21. приведена увеличенная часть предыдущего графика. Эти отклонения можно объяснить насыщением ОУ (максимально допустимые значения напряжения на выходе ОУ ± 15 В). Очевидно, что при увеличении амплитуды сигнала источника увеличивается и область искажений сигнала на выходе

Рис. 19. Модель активного фильтра низких частот в SimPowerSystems .

Рис. 20. Сигнал на выходе активного фильтра низких частот.

Рис. 21. Фрагмент сигнала на выходе активного фильтра низких частот.

Активные фильтры реализуются на основе усилителей (обычно ОУ) и пассивных RC- фильтров. Среди преимуществ активных фильтров по сравнению с пассивными следует выделить:

· отсутствие катушек индуктивности;

· лучшая избирательность;

· компенсация затухания полезных сигналов или даже их усиление;

· пригодность к реализации в виде ИМС.

Активные фильтры имеют и недостатки:

¨ потребление энергии от источника питания;

¨ ограниченный динамический диапазон;

¨ дополнительные нелинейные искажения сигнала.

Отметим так же, что использование активных фильтров с ОУ на частотах свыше десятков мегагерц затруднено из-за малой частоты единичного усиления большинства ОУ широкого применения. Особенно преимущество активных фильтров на ОУ проявляется на самых низких частотах, вплоть до долей герц.

В общем случае можно считать, что ОУ в активном фильтре корректирует АЧХ пассивного фильтра за счет обеспечения разных условий для прохождения различных частот спектра сигнала, компенсирует потери на заданных частотах, что приводит к получению крутых спадов выходного напряжения на склонах АЧХ. Для этих целей используются разнообразные частотно-избирательные ОС в ОУ. В активных фильтрах обеспечивается получение АЧХ всех разновидностей фильтров: нижних частот (ФНЧ), верхних частот (ФВЧ) и полосовых (ПФ).

Первым этапом синтеза всякого фильтра является задание передаточной функции (в операторной или комплексной форме), которая отвечает условиям практической реализуемости и одновременно обеспечивает получение необходимой АЧХ или ФЧХ (но не обеих) фильтра. Этот этап называют аппроксимацией характеристик фильтра.

Операторная функция представляет собой отношение полиномов:

K(p )=A(p )/B(p ),

и однозначно определяется нулями и полюсами. Простейший полином числителя - константа. Число полюсов функции (а в активных фильтрах на ОУ число полюсов обычно равно числу конденсаторов в цепях, формирующих АЧХ) определяет порядок фильтра. Порядок фильтра указывает на скорость спада его АЧХ, которая для первого порядка составляет 20дБ/дек, для второго - 40дБ/дек, для третьего - 60дБ/дек и д.д.

Задачу аппроксимации решают для ФНЧ, затем с помощью метода инверсии частоты полученную зависимость используют для других типов фильтров. В большинстве случаев задают АЧХ, принимая нормированный коэффициент передачи:

,

где f(х) - функция фильтрации; - нормированная частота; - частота среза фильтра; e - допустимое отклонение в полосе пропускания.

В зависимости от того, какая функция принимается в качестве f(х) различают фильтры (начиная со второго порядка) Баттерворта, Чебышева, Бесселя и др. На рисунке 7.15 приведены их сравнительные характеристики.

Фильтр Баттерворта (функция Батерворта) описывает АЧХ с максимально плоской частью в полосе пропускания и относительно небольшой скоростью спада. АЧХ такого ФНЧ может быть представлена в следующем виде:

где n - порядок фильтра.

Фильтр Чебышева (функция Чебышева) описывает АЧХ с определенной неравномерностью в полосе пропускания, но не большей скоростью спада.

Фильтр Бесселя характеризуется линейной ФЧХ, в результате чего сигналы, частоты которых лежат в полосе пропускания, проходят через фильтр без искажений. В частности, фильтры Бесселя не дают выбросов при обработке колебаний прямоугольной формы.

Помимо перечисленных аппроксимаций АЧХ активных фильтров известны и другие, например, обратного фильтра Чебышева, фильтра Золотарева и т.д. Заметим, что схемы активных фильтров не изменяются в зависимости от типа аппроксимации АЧХ, а изменяются соотношения между номиналами их элементов.

Простейшие (первого порядка) ФВЧ, ФНЧ, ПФ и их ЛАЧХ приведены на рисунке 7.16.

В этих фильтрах конденсатор, определяющий частотную характеристику, включен в цепь ООС.

Для ФВЧ (рисунок 7.16а) коэффициент передачи равен:

,

Частоту сопряжения асимптот находят из условия , откуда

.

Для ФНЧ (рисунок 7.16б) имеем:

,

.

В ПФ (рисунок 7.16в) присутствуют элементы ФВЧ и ФНЧ.

Можно увеличить крутизну спада ЛАЧХ, если увеличить порядок фильтров. Активные ФНЧ, ФВЧ и ПФ второго порядка приведены на рисунке 7.17.

Наклон асимптот у них может достигать 40дБ/дек, а переход от ФНЧ к ФВЧ, как видно из рисунков 7.17а,б, осуществляется заменой резисторов на конденсаторы, и наоборот. В ПФ (рисунок 7.17в) имеются элементы ФВЧ и ФНЧ. Передаточные функции равны :

¨ для ФНЧ:

;

¨ для ФВЧ:

.

Для ПФ резонансная частота равна:

.

Для ФНЧ и ФВЧ частоты среза соответственно равны:

;

.

Довольно часто ПФ второго порядка реализуют с помощью мостовых цепей. Наиболее распространены двойные Т-образные мосты, которые "не пропускают" сигнал на частоте резонанса (рисунок 7.18а) и мосты Вина, имеющие максимальный коэффициент передачи на резонансной частоте (рисунок 7.18б).

Мостовые схемы включены в цепи ПОС и ООС. В случае двойного Т-образного моста глубина ООС минимальна на частоте резонанса, и усиление на этой частоте максимально. При использовании моста Вина, усиление на частоте резонанса максимально, т.к. максимальна глубина ПОС. При этом для сохранения устойчивости глубина ООС, введенной с помощью резисторов и , должна быть больше глубины ПОС. Если глубины ПОС и ООС близки, то такой фильтр может иметь эквивалентную добротность Q»2000.

Резонансная частота двойного Т-образного моста при и , и моста Вина при и , равна , и ее выбирают исходя из условия устойчивости , т.к. коэффициент передачи моста Вина на частоте равен 1/3.

Для получения режекторного фильтра двойной Т-образный мост можно включить так, как показано на рисунке 7.18в, или мост Вина включить в цепь ООС.

Для построения активного перестраемого фильтра обычно используют мост Вина, у которого резисторы и выполняют в виде сдвоенного переменного резистора.

Возможно построение активного универсального фильтра (ФНЧ, ФВЧ и ПФ), вариант схемы которого приведен на рисунке 7.19.

В его состав входят сумматор на ОУ и два ФНЧ первого порядка на ОУ и , которые включены последовательно. Если , то частота сопряжения . ЛАЧХ имеет наклон асимптот порядка 40дБ/дек. Универсальный активный фильтр имеет хорошую стабильность параметров и высокую добротность (до 100). В серийных ИМС довольно часто используется подобный принцип построения фильтров.

Гираторы

Гиратором называется электронное устройство, преобразующее полное сопротивление реактивных элементов. Обычно это преобразователь емкости в индуктивность, т.е. эквивалент индуктивности. Иногда гираторы называют синтезаторами индуктивностей. Широкое распространение гираторов в ИМС объясняется большими трудностями изготовления катушек индуктивностей с помощью твердотельной технологии. Использование гираторов позволяет получить относительно большую индуктивность с хорошими массогабаритными показателями.

На рисунке 7.20 приведена электрическая схема одного из вариантов гиратора, представляющего собой повторитель на ОУ, охваченный частотно-избирательной ПОС ( и ).

Поскольку с увеличением частоты сигнала емкостное сопротивление конденсатора уменьшается, то напряжение в точке а будет возрастать. Вместе с ним будет возрастать напряжение на выходе ОУ. Увеличенное напряжение с выхода по цепи ПОС поступает на неинвертирующий вход, что приводит к дальнейшему росту напряжения в точке а , причем тем интенсивнее, чем выше частота. Таким образом, напряжение в точке а ведет себя подобно напряжению на катушке индуктивности. Синтезированная индуктивность определяется по формуле :

.

Добротность гиратора определяется как :

.

Одной из основных проблем при создании гираторов является трудность в получении эквивалента индуктивности, у которой оба вывода не соединены с общей шиной. Такой гиратор выполняется, как минимум, на четырех ОУ. Другой проблемой является относительно узкий диапазон рабочих частот гиратора (до нескольких килогерц на ОУ широкого применения).

Здравствуйте, уважаемые радиолюбители! Сегодня хочу вам предложить схему фильтра НЧ для любого . Мною было опробовано не мало схем фильтров, из этого количества некоторые либо не устраивали по звуку, либо запускались с танцами под бубен, либо запускались вообще броском об стену! И вот в один прекрасный день лазил по одному форуму, и наткнулся на пост со схемой. Как писали, схема была найдена на каком-то форуме в давно забытой теме и очень его порадовала своей повторяемостью и хорошим звучанием баса. Большое спасибо этому человеку! Решил и я повторить эту схемку, так как давно в поисках хорошего ФНЧ и нужная микросхема была в наличии.

Скопируйте для увеличения

Сердце схемы, хорошо себя зарекомендовавшая TL074 (084), один сдвоенный переменный резистор, в таком нестандартном для меня включении, и немного пассивных компонентов (резисторы и конденсаторы). Решил, что для питания откажусь от всяких лишних стабилизаторов (7815 и 7915) - потребления схемы небольшое, и поэтому решено запитать схему по простому - пара стабилитронов (применил 1N4712), пара ограничивающих резисторов (1.5 kom у меня), небольшие электролиты по питанию и шунтирующие конденсаторы по 0,1 мкф - все это к основному питанию УНЧ сабвуфера (+-35 вольт в моём случае).

Монтаж выполнен на печатной плате из текстолита - скачать файл . Печатку немного подкорректировал под себя и добавил стабилитроны. Все элементы подписаны, наводите курсор на элементы - показывается его номинал. Переменные резисторы, регулирующий частоту среза и регулировки громкости, в моём варианте выведены с платы на проводках.

Схема работает сразу, делал уже раз десять этот ФНЧ - естественно если не путать номиналы и не оставлять сопельки между дорожек. Также хочу сказать что чувствительности фильтра хватает, чтобы подключать портативные источники звука такие как: сотовый телефон, mp3 плеер и подобные устройства.

Приготовили плату? Тогда берём паяльник, и первым делом запаивайте стабилитроны с ограничивающими резисторами и конденсаторы, панельку для TL-ки. Подключите плату к источнику питания вашего УНЧ (у меня +-35 вольт) - удостоверьтесь что к 4 и 11 ножки микросхемы на панельки поступает +-12 вольт. Если всё правильно - паяем конденсаторы, резисторы.

Не забываем, что конденсаторы нужно ставить пленочные в такие схемы, не считая электролитов и шунтирующих по питанию.

Переменный резистор, на регулировку среза частоты - нужно подключать именно как нарисовано по схеме. Повторюсь, что схема не нуждается в настройках, правильный монтаж и чистка платки от флюса, если использовали упомянутый.

Теперь в своих конструкциях сабвуферов, всегда использую этот фильтр за его хорошее качество баса и простую схему. Также без лишних ненужных наворотов. Рекомендую, как говорится к повторению, с вами был Akplex .

Обсудить статью НЧ ФИЛЬТР ДЛЯ САБВУФЕРА

Б. Успенский

Простым приемом разделения каскадов по частотному признаку является установка разделительных конденсаторов или интегрирующих RС-цепей. Однако часто возникает необходимость в фильтрах с более крутыми склонами, чем у RС-цепочки. Такая потребность существует всегда, когда надо отделить полезный сигнал от близкой по частоте помехи.

Возникает вопрос: можно ли, соединяя каскадно интегрирующие RС-цепочки, получить, например, сложный фильтр нижних частот (ФНЧ) с характеристикой, близкой к идеальной прямоугольной, как на рис. 1.

Рис. 1. Идеальная частотная характеристика ФНЧ

Существует простой ответ на такой вопрос: даже если разделить отдельные RС-секции буферными усилителями, все равно из многих плавных перегибов частотной характеристики не сделать одного крутого. В настоящее время в диапазоне частот 0...0,1 МГц подобную задачу решают с помощью активных RС-фильтров, не содержащих индуктивностей.

Интегральный операционный усилитель (ОУ) оказался весьма полезным элементом для реализации активных RС-фильтров. Чем ниже частотный диапазон, тем резче проявляются преимущества активных фильтров с точки зрения микроминиатюризации электронной аппаратуры, так как даже при очень низких частотах (до 0,001 Гц) имеется возможность использовать резисторы и конденсаторы не слишком больших номиналов.

Таблица 1


В активных фильтрах обеспечивается реализация частотных характеристик всех типов: нижних и верхних частот, полосовых с одним элементом настройки (эквивалент одиночного LC-контура), полосовых с несколькими сопряженными элементами настройки, режекторных, фазовых фильтров и ряда других специальных характеристик.

Создание активных фильтров начинают с выбора по графикам или функциональным таблицам того вида частотной характеристики, которая обеспечит желаемое подавление помехи относительно единичного уровня на требуемой частоте, отличающейся в заданное число раз от границы полосы пропускания или от средней частоты для резонансного фильтра. Напомним, что полоса пропускания ФНЧ простирается по частоте от 0 до граничной частоты fгр, фильтра высокой частоты (ФВЧ) - от fгр до бесконечности. При построении фильтров наибольшее распространение получили функции Баттерворта, Чебышева и Бесселя. В отличие от других характеристика фильтра Чебышева в полосе пропускания колеблется (пульсирует) около заданного уровня в установленных пределах, выражаемых в децибелах.

Степень приближения характеристики того или иного фильтра к идеальной зависит от порядка математической функции (чем выше порядок - тем ближе). Как правило, используют фильтры не более 10-го порядка. Повышение порядка затрудняет настройку фильтра и ухудшает стабильность его параметров. Максимальная добротность активного фильтра достигает нескольких сотен на частотах до 1 кГц.

Одной из наиболее распространенных структур каскадных фильтров является звено с многопетлевой обратной связью, построенное на базе инвертирующего ОУ, который в расчетах принят за идеальный. Звено второго порядка показано на рис. 2.

Рис. 2. Структура фильтра второго порядка:



Значение С1, С2 для ФНЧ и R1, R2 для ФВЧ тогда определяются умножением или делением С0 и R0 на коэффициенты из табл. 2 по правилу:
C1 = m1С0, R1 = R0/m1
С2 = m2C0, R2 = R0/m2.

Звенья третьего порядка ФНЧ и ФВЧ показаны на рис. 3.

Рис. 3. Структура фильтра третьего порядка:
а - нижних частот; б - верхних частот


В полосе пропускания коэффициент передачи звена равен 0,5. Определение элементов произведем по тому же правилу:
С1 = m1С0, R1 = R0/m1 С2 = m2С0, R2 = R0/m2 С3 = m3С0, R3 = R0/m3.

Таблица коэффициентов выглядит следующим образом.

Таблица 2

Порядок фильтра надо определить расчетным путем, задавшись отношением Uвых/Uвх на частоте f вне полосы пропускания при известной граничной частоте fгр. Для фильтра Баттерворта существует зависимость

Для иллюстрации на рис. 4 приведено сравнение характеристик трех фильтров нижних частот шестого порядка с характеристикой затухания RC-цепи. Все устройства имеют одно и то же значение fгр.

Рис. 4. Сравнение характеристик ФНЧ шестого порядка:
1- фильтр Бесселя; 2 - фильтр Баттеррорта; 3 - фильтр Чебышева (пульсации 0,5 дБ)


Полосовой активный фильтр можно построить на одном ОУ по схеме рис. 5.

Рис. 5. Полосовой фильтр


Рассмотрим числовой пример. Пусть необходимо построить селективный фильтр с резонансной частотой F0 = 10 Гц и добротностью Q = 100.

Его полоса находится в пределах 9,95...10,05 Гц. На резонансной частоте коэффициент передачи В0 = 10. Зададим емкость конденсатора С = 1 мкФ. Тогда по формулам для рассматриваемого фильтра:


Устройство остается работоспособным, если исключить R3 и использовать ОУ с усилением, точно равным 2Q 2 , Но тогда добротность зависит от свойств ОУ и будет нестабильна. Поэтому коэффициент усиления ОУ на резонансной частоте должен значительно превышать 2Q 2 = 20 000 на частоте 10 Гц. Если усиление ОУ превышает 200 000 на частоте 10 Гц, можно увеличить R3 на 10 %, чтобы добиться расчетного значения добротности. Не всякий ОУ имеет на частоте 10 Гц усиление 20 000, тем более 200 000. Например, ОУ К140УД7 не подходит для такого фильтра; потребуется КМ551УД1А (Б).

Используя ФНЧ и ФВЧ, включенные каскадно, получают полосно-пропускающий фильтр (рис. 6).

Рис. 6. Полосно-пропускающий фильтр


Крутизна склонов характеристики такого фильтра определяется порядком выбранных ФНЧ и ФВЧ. Осуществляя разноc граничных частот высокодобротных ФВЧ и ФНЧ, можно расширить полосу пропускания, но при этом ухудшается равномерность коэффициента передачи в пределах полосы. Представляет интерес получить плоскую амплитудно-частотную характеристику в полосе пропускания.

Взаимная расстройка нескольких резонансных полосовых фильтров (ПФ), каждый из которых может быть построен по схеме рис. 5, дает плоскую частотную характеристику с одновременным увеличением избирательности. При этом выбирают одну из известных функций для реализации заданных требований к частотной характеристике, а затем преобразуют НЧ-функцию в полосно-пропускающую для определения добротности Qр и резонансной частоты fр каждого звена. Звенья включают последовательно, причем неравномерность характеристики в полосе пропускания и избирательность улучшаются с увеличением числа каскадов резонансных ПФ.

Для упрощения методики, создания каскадных ПФ в табл. 3 представлены оптимальные значения полосы частот дельта fр (по уровню -3 дБ) и средней частоты fp резонансных звеньев, выраженные через общую полосу частот дельта f (по уровню -3 дБ) и среднюю частоту f0 составного фильтра.

Таблица 3


Точные значения средней частоты и границ по уровню - 3 дБ лучше всего подбирать экспериментально, подстраивая добротность.

На примере ФНЧ, ФВЧ и ПФ мы видели, что требования к коэффициенту усиления или широкополосности ОУ могут быть чрезмерно велики. Тогда следует перейти к звеньям второго порядка на двух или трех ОУ. На рис. 7 представлен интересный фильтр второго порядка, объединяющий в себе функции трех фильтров; с выхода и DA1 получим сигнал ФНЧ, с выхода DA2 - сигнал ФВЧ, а с выхода DА3 - сигнал ПФ.

Рис. 7. Активный фильтр второго порядка


Граничные частоты ФНЧ, ФВЧ и центральная частота ПФ одна и та же. Добротность также одинакова для всех фильтров.


Все фильтры можно настраивать посредством одновременного изменения R1, R2 или С1, С2. Добротность независимо от этого можно-регулировать при помощи R4. Конечность усиления ОУ определяет истинную добротность Q = Q0(1 +2Q0/K).

Необходимо выбрать ОУ с коэффициентом усиления К >> 2Q0 на граничной частоте. Это условие значительно менее категорично, чем для фильтров на одном ОУ. Следовательно, на трех ОУ сравнительно невысокого качества можно собрать фильтр с лучшими характеристиками.

Полосно-заграждающий (режекторный) фильтр подчас необходим для вырезания узкополосной помехи, например сетевой частоты или ее гармоник. Используя, например, четырехполюсные ФНЧ и ФВЧ Баттерворта с граничными частотами 25 Гц и 100 Гц (рис. 8) и отдельный сумматор на ОУ, получим фильтр на частоту 50 Гц с добротностью Q = 5 и глубиной режекции -24 дБ.

Рис. 8. Полосно-заграждающий фильтр


Достоинством такого фильтра является то, что его характеристика в полосе пропускания - ниже 25 Гц и выше 100 Гц - оказывается идеально плоской.

Как и полосовой фильтр, режекторный фильтр можно собрать на одном ОУ. К сожалению, характеристики таких фильтров не отличаются стабильностью. Поэтому рекомендуем применять гираторный фильтр на двух ОУ (рис. 9).

Рис. 9. Режекторный гираторный фильтр


Резонансная схема на усилителе DA2 не склонна к генерации. При выборе сопротивлений следует выдержать соотношение R1/R2 = R3/2R4. Установив емкость конденсатора C2, изменением емкости конденсатора С1 можно настроить фильтр на требуемую частоту

В небольших пределах добротность можно регулировать подстройкой резистора R5. Используя эту схему, можно получить глубину режекции до 40 дБ, однако амплитуду входного сигнала следует уменьшать чтобы сохранить линейность гиратора на элементе DA2.

В описанных выше фильтрах коэффициент передачи и фазовый сдвиг зависели от частоты входного сигнала. Существуют схемы активных фильтров, коэффициент передачи которых остается постоянным, а фазовый сдвиг зависит от частоты. Такие схемы называют фазовыми фильтрами. Они используются для фазовой коррекции и задержки сигналов без искажений.

Простейший фазовый фильтр первого порядка показан на рис. 10.

Рис. 10 Фазовый фильтр первого порядка


На низких частотах, когда емкость конденсатора С не работает, коэффициент передачи равен +1, а на высоких -1. Изменяется только фаза выходного сигнала. Эта схема с успехом может быть использована как фазовращатель. Изменяя сопротивление резистора R, можно регулировать на выходе фазовый сдвиг входного синусоидального сигнала.

Существуют также фазовые звенья второго порядка. Объединяя их каскадно, строят фазовые фильтры высоких порядков. Например, для задержки входного сигнала с частотным спектром 0...1 кГц на время 2 мс требуется фазовый фильтр седьмого порядка, параметры которого определяются по таблицам.

Следует отметить, что любое отклонение номиналов используемых RC-элементов от расчетных приводит к ухудшению параметров фильтра. Поэтому желательно применять точные или подобранные резисторы, а нестандартные номиналы образовывать параллельным включением нескольких конденсаторов. Электролитические конденсаторы применять не следует. Помимо требований по усилению ОУ должен обладать высоким входным сопротивлением, значительно превышающим сопротивления резисторов фильтра. Если этого обеспечить нельзя, подключите перед входом инвертирующего усилителя повторитель на ОУ.

Отечественная промышленность выпускает гибридные интегральные схемы серии К298, которая включает RС-фильтры верхних и нижних частот шестого порядка на базе усилителей с единичным усилением (повторителей). Фильтры имеют 21 номинал граничной частоты от 100 до 10 000 Гц с отклонением не более ±3%. Обозначение фильтров К298ФН1...21 и К298ФВ1...21.

Принципы конструирования фильтров не ограничиваются приведенными примерами. Менее распространены активные RC-фильтры без сосредоточенных емкостей и индуктивностей, использующие инерционные свойства ОУ. Предельно высокие значения добротности, вплоть до 1000 на частотах до 100 кГц, обеспечивают синхронные фильтры с коммутируемыми емкостями. Наконец, методами полупроводниковой технологии с зарядовой связью создают активные фильтры на приборах с переносом заряда. Такой фильтр верхних частот 528ФВ1 с граничной частотой 820...940 Гц имеется в составе серии 528; динамический фильтр нижних частот 1111ФН1 является одной из новых разработок.

Литература
Грэм Дж., Тоби Дж., Хьюлсман Л. Проектирование и применение операционных усилителей.- М. : Мир, 1974, с. 510.
Марше Ж. Операционные усилители и их применение.- Л. : Энергия, 1974, с. 215.
Гарет П. Аналоговые устройства для микропроцессоров и мини-ЭВМ.- М. : Мир, 1981, с. 268.
Т и т ц е У., Шенк К. Полупроводниковая схемотехника.- М. Мир, 1982, с. 512.
Хоровиц П., Хилл У. Искусство схемотехники, т. 1.- М. Мир, 1983, с. 598.
[email protected]